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Abstract—We present a new implementation of collaborative
ORB-SLAM, a feature based SLAM system that operates real-
time, small and large, as well as in both indoor and outdoor
environments. We enhance the open-source ORB-SLAM2 im-
plementation to use data from multiple agents. A multi-agent
implementation gives us the advantages of collecting data more
quickly and covering a greater area. It also adds the challenge
of merging two maps online at loop closure points, thus resulting
in an increased area of coverage within a shorter duration of
time. Additionally, we implement a robot-to-robot loop closure
mechanism through the use of APRIL tags on each of the agents
to make the robots easily detectable by each other in order to
add additional constraints. 1 2

Index terms— Localization, mapping, factor-graphs, MAP
estimation, data association, SLAM, multi-agent, KITTI
dataset.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) algorithms
provide a way for robots to both build a map of an unknown
environment and locate themselves on the map at the same
time. There are many variations on the original implementation
for different motion and sensor models and different resource
constraints. One of the most effective and clean implemen-
tations for vision based SLAM is ORB-SLAM2 [3]. ORB-
SLAM2, which is built upon its predecessor ORB-SLAM [2],
provides support for monocular, stereo, and RGB-D cameras.
A limitation of ORB-SLAM2 is that it restricts itself to a single
agent. A multi-agent system has two main advantages. Firstly,
it can explore and map a greater area in the same amount
of time. Secondly, with the addition of an agent recognition
system, it can perform loop closures from recognition of other
agents as well as map points. To address this limitation and
exploit these benefits, we run ORB-SLAM2 simultaneously on
two client agents and fuse the result in a server agent.

A vast majority of SLAM solutions consider a single robot
in a static environment, using either sparse 2D/3D feature
points or dense 2D laser range-finder data. Our work addresses
the less well-studied problem of a multi-robot visual SLAM,

1The code of this work has been open-sourced at https://github.com/
um-mobrob-t12-w19/ORB SLAM2. Also check our webpage for further
details and a video demonstration.

2We also provide a demonstation video both at our website and YouTube

motivated by the fact that multiple robots can complete explo-
ration and mapping tasks in less time than a single robot can.
We start from the official implementation of the existing ORB-
SLAM. At the inception of the project, we began by splitting
the currently existing KITTI dataset into two adjustably-
sized and slightly overlapping portions, enabling the multiple
robots to start their traversal at two different points, collecting
information in their environment. A centralized communica-
tion system is implemented such that after completion, the
subsystems (ORB-SLAM instances) send their local mapping
information to a centralized server thread to perform map
fusion and global optimization. This strategy mimics clients
performing the front-end operation of abstracting information
from the sensor models and gathering data from their local
environment, leaving the server to infer abstracted data by
implementing various optimization strategies on the existing
information, eliminate redundancies during map fusion, and
publish updates back to the client. This way, the server fuses
the data gathered by both the robots.

Therefore, we present multi-agent SLAM system JORB-
SLAM3 in this paper. The main contributions of this work
are:

1) Implementing a multi-thread based centralized multi-
agent SLAM system with ORB-SLAM instances as
client and a graph-based global optimizer backbone as
the server.

2) Adding an additional constraint between poses when the
robot travels to the same space but not recognizing the
loop closure, through the addition of April tag detection
[6], enabling the use of the pose of tags to enhance the
graph optimization for robust SLAM.

3) Creating our own dataset to validate and evaluate the
implementation of our April-tag enhancement. Tools,
including open source code, are also provided.

Section II details the background of JORB-SLAM. The
math models of the two core JORB-SLAM modules are
discussed in Section III and Section IV. To validate our system,
we use two datasets to test the robustness and performance of

3Jointly optimized ORB-SLAM

https://github.com/um-mobrob-t12-w19/ORB_SLAM2
https://github.com/um-mobrob-t12-w19/ORB_SLAM2
https://um-mobrob-t12-w19.github.io/
https://www.youtube.com/watch?v=OekzYSar9m0


our system. Data collection is described in Section V and the
validation results are presented in Section VI.

II. BACKGROUND

A. ORB-SLAM2

Visual SLAM using only images as external information
estimates the robot position while building the environment
map. The same problem has also been solved by using laser
or sonar sensors to build a 2D map in a small dynamic envi-
ronment. However, in a dynamic, wide ranging and complex
environment, there are still problems to be solved. The use of
computer vision techniques in visual SLAM, such as feature
detection, characterization, feature matching, image recogni-
tion and recovery,still have much room for improvement.

During the development of vision-based SLAM methods,
much exciting work has come around including ORB-SLAM
and LSD-SLAM [4], which provide accurate SLAM results
and real-time performance. ORB-SLAM is a versatile feature
point based SLAM system and it works in both indoor envi-
ronments and large-scale outdoor environments. ORB-SLAM
is robust against large movement between frames and it is
equipped with loop closure and relocalization abilities, which
makes it suitable for real world applications.

The newer version of ORB-SLAM, ORB-SLAM2, is com-
prised of several parallel modules: tracking, local mapping,
loop closing and place recognition. It leverages an ORB fea-
ture extractor [5] to provide feature points for frame matching
and uses the bag of words method [1] for place recognition.
Bundle adjustment is also performed in local mapping as part
of the SLAM backend. In our work, we build our system based
on the feature based ORB-SLAM structure.

B. Multi-agent SLAM

Using a multi-agent system has a number of advantages.
Firstly, it is able to fuse data from multiple robots into a
single map. Secondly, it inherits the bounded-time, bounded-
memory properties of a single robot SLAM algorithm (CPU
and memory time do not increase with the path length).
Both the multi-agent and single agent SLAM tasks consist of
estimating a world state, but in the multi-agent case the world
state is defined as a map of a whole environment and platform
positions, including their relative orientation. These relative
orientations are important because they are used to combine
the two maps built with data from the two observers. There
are other approaches that require a prior knowledge about the
platforms orientations. These approaches try to estimate the
orientations in real time. In both cases, rules are provided
to correct the local world state of a single observer using
data from another observer. The Figure 1 shows a high level
representation of a typical multi-agent SLAM method.
• The Platform1, ..., PlatformN components represent

executors of individual SLAM algorithm instances. They
can be implemented as separate computer units or
threads from a mainframe etc.

• The Merger block updates data from a corresponding
Platform with external data from another Platform-s.

• The Common Merger collects all estimated local world
states and combines them to produce the output world
state and provide data for each local Platform to update
its state.

Fig. 1. Component diagram of a centralized Multi-Agent SLAM system

The challenging problem in multi-agent SLAM is merging
the maps built by each separate platform. Every multi-agent
SLAM method either proposes its own algorithm of merging
or requires special assumptions for the environment or the
world state. There are two major categories of multi-robot
systems, centralized and distributed. Centralized systems have
a ”server” to accept individual intermediate SLAM results and
offer global map construction, while in distributed systems,
each robot communicates with the others and transfers essen-
tial information to reinforce its own mapping process. There
is also the choice of the interaction between the maps: a map
can exist as one copy shared between all platforms, or each
agent can keep and update its own representation of a map.
For the latter case, the result of a merging can be presented
as a common map that is identical for each platform, or every
existing map can be updated independently.

Another problem is the choice of representation of the map.
Map structure strongly influences merging algorithms and the
optimizer implementation. Some common representations of a
map are listed below:
• A graph representation of a map where each vertex

stores a unique position of a platform and edges present
the transaction between vertices.

• Landmarks with their co-variance matrix. Landmarks
may be calculated using captured scans or may be
located in the environment manually.

• A certainty grid that stores the probability for each cell
to be occupied.

At the same time the individual pose updating is a critical
challenge for multi-agent SLAM because observers could
meet in the real world but not in their own maps. This
meeting initiates a pose correction for every platform. These



corrections could happen as a jump, instantly teleporting a
platform to the best found position, or through spreading the
correction over several previous poses, but in the last case it
is required to track several poses, excluding the last one.

A famous multi-agent SLAM system based on ORB-SLAM
is Collaborative ORB-SLAM (CORB-SLAM [9]). CORB-
SLAM is a centralized multi-agent system consisting of mul-
tiple extended ORB-SLAM2 instances with memory manage-
ment modules. The central server of CORB-SLAM detects
the overlaps of multiple local maps using Bag of Words and
fuses these maps with PnP solver. To simplify the multi-agent
system structure and focus on the backend, our project uses
a centralized method of multi-robot SLAM, which is similar
to CORB-SLAM, based on a multi-threaded system structure,
with emphasis on the map fusion method.

C. April Tags

AprilTag [6] is a visual fiducial system, useful for a wide
variety of tasks including augmented reality, robotics, and
camera calibration. Targets can be created from an ordinary
printer, and the AprilTag detection software computes the
precise 3D position, orientation, and identity of the tags
relative to the camera. The AprilTag library is implemented
in C with no external dependencies. It is designed to be
easily included in other applications, as well as be portable
to embedded devices. The fiducial design and coding system
are based on a near-optimal lexicographic coding system, and
the detection software is robust to variable lighting conditions
and view angles.

Fig. 2. 36H11 April Tag family

The April tags are the means by which the clients can detect
each other. Whenever a tag is detected by a client, it signifies
a loop closure. Add the constraints based on the tags and
the clients’ orientation is embedded as a factor in our graph,
allowing us to incorporate loop closures even when the clients
don’t have the same scene information but are in the same
location, while still using only a camera based system.

In our case we have used the April Tags of tag family 36h11.
The overall process is shown in Fig. 3. The program detects

the tag and then finds the homography matrix H and further
the SE(3) transformation of the tag’s image coordinates to
the world coordinates. This transformation requires the actual
dimensions of the tag and the camera intrinsics to be known.

Fig. 3. April Tag detection overview

III. GLOBAL MAP FUSING

We implement an offline solution to global map fusing. This
is run in five steps. Fig. 4 shows an overview of the system.

1) We first run both sequences independently. These run a
largely unmodified ORB-SLAM2.

2) Upon completion, the server begins. All keyframes and
map points are copied over from the individually con-
structed maps into the combined global map. Special
care is required to copy all necessary data from each
object. In addition, we maintain a map of keyframes
and map points in the client maps to the keyframes and
map points in the global map.

3) The covisibility graph is then reconstructed on the global
map using the dictionary to look up connections in
the client maps. At this point we have an inconsistent
map with overlapping trajectories and features. The
covisibility graph has two disjoint subgraphs.

4) Next we add each keyframe to the global loop closer
to search for loop closures between sequences. This is
done in four substeps.

a) DBoW2 is used to detect possible loop closure
candidates.

b) Loop closure candidates (keyframes) from the
same sequence are rejected. Each sequence should
already contain self loop closures created in step
1.

c) A similarity transform is attempted with outlier
rejection for more a geometric check.

d) Finally a loop closure edge is added between the
sequences and the essential graph is optimized.

5) After processing all keyframes for loop closures, a
final global bundle adjustment is performed to fix any
remaining inconsistencies within the map.

IV. CLIENT TO CLIENT LOOP CLOSURES

We propose a new way of closing loops. Largely motivated
by examples such as fig. 5, we wanted to improve multi agent
mapping beyond just place recognition. Using April Tags, we
can extract the relative pose of another passing agent as we are



Fig. 4. JORB-SLAM System overview showing our extension to the existing ORB-SLAM2 modules.

mapping. We incorporate this information as extra constraints
in the factor graph.

Fig. 5. A section of the KITTI 00 sequence where a loop closure should
have been performed, but was not. This is a result of the inability to match
ORB features under high viewpoint invariance.

A. Detection

We begin by searching for April Tags within each frame.
This is done at the same time as ORB feature extraction.

With a successful detection, we extract the relative pose of
the tag and store that in the frame. We modify the constraints
of keyframe creation in section V-E of [2]. Keyframes are
always created upon an April Tag detection. With the setup
we use in section V-B one client can see another, it is highly
likely that the reverse is also true. Therefore, we want to
increase the number of constraints and time resolution of
the trajectory during the pass. With a large number of new
keyframes, we also need to modify keyframe culling of section
VI-E. Keyframes flagged with an April Tag detection are
automatically kept regardless of the keyframe culling request.

B. Matching

Once both clients have finished mapping and their maps
have been copied into the global map, we need to find the
corresponding keyframes to add our constraints. To do this, we
augment the covisibility graph to create our April Tag graph
which contains the edges representing relative poses between
keyframes. This allows us to quickly construct the factor graph
during optimization.

Given the keyframes χA and χB from each sequence, we
can query their timestamps with t(·). If a keyframe Xi ∈
χA has detected an April Tag, it searches keyframes from the
second sequence for the closest timestamp.

Xi.Xapril = argmin
Xj∈χB

|t(Xj)− t(Xi)| (1)



We then check that the timestamps are close enough, otherwise
the detection is rejected. |t(Xi.Xapril)− t(Xi)| < δt. We set
δt = 0.1 seconds.

C. Factors

We define ρ to be the objective function minimized in the
full bundle adjustment of [3] (equation (4)). We then append
our objective function that minimizes the error in the April
Tag constraints. Let XA be a keyframe which has detected
an April Tag associated with XB = XA.Xapril. The detected
April Tag gives us the relative transformation from XA to XB ,
X̂AB . Now we define our factor:

r(Xi, Xj) =
1

2

∣∣∣∣∣∣log (X−1i XjX̂ij

)∣∣∣∣∣∣2 (2)

Now we compute the Jacobians of this factor. We begin by
perturbing the inputs by a small vector in se(3).

r(Xi exp(d), Xj) =
1

2

∣∣∣∣∣∣log (exp(−d)X−1i XjX̂ij

)∣∣∣∣∣∣2 (3)

Note that we can assume the error will be small in X−1i XjX̂ij

and we can therefore replace it with exp(ξij)

r(Xi exp(d), Xj) =
1

2
||log (exp(−d) exp(ξij)||2 (4)

≈ 1

2

∣∣∣∣ξij − J−1l (ξij)d
∣∣∣∣2 (5)

Here Jl is the left Jacobian of SE(3) [8]. Next we turn to the
perturbation of Xj .

r(Xi, Xj exp(d)) =
1

2

∣∣∣∣∣∣log (X−1i Xj exp(d)X̂ij

)∣∣∣∣∣∣2 (6)

=
1

2

∣∣∣∣∣∣log (X−1i XjX̂ij exp(Ad−1
X̂ij

d)
)∣∣∣∣∣∣2

(7)

=
1

2

∣∣∣∣∣∣log (exp(ξij) exp(Ad−1
X̂ij

d)
)∣∣∣∣∣∣2 (8)

≈ 1

2

∣∣∣∣∣∣ξij + J−1r (ξij)Ad−1
X̂ij

d
∣∣∣∣∣∣2 (9)

Here Jr is the right Jacobian of SE(3) [8]. Now we add to ρ
to create the factor graph with Client to Client loop closures.
We minimize the augmented objective function with respect
to the poses of our graph

{Xi, Xi} = argmin
Xi∈R3,Xl∈SE(3)

ρ+
∑
j

r(Xj , Xj .Xapril)

(10)

Here, we replace Rl and tl with Xl in the minimization term.
ρ contains all the arguments to the double sum presented in
equation (4) of [3].

(11)

Fig. 6. Map of the second floor of EECS building

V. DATA PREPARATION

The open source ORB-SLAM implementation comes with
support to run on three datasets: the TUM dataset, the KITTI
dataset, and the EuRoC dataset. We utilize only the KITTI
dataset, modifying the provided KITTI run script to mimic
two separate data streams (as from two agents) and adding a
server class to coordinate the results of ORB-SLAM2 running
on each agent in a client/server relationship.

A. KITTI Dataset Reconstruction

The KITTI dataset [7] is a popular comprehensive data
collection with well-defined benchmarks for tasks including
object detection, object tracking, vehicle odometry and more.
The dataset provides performance charts and scoring for state-
of-art algorithms.

In the first phase of our testing, we utilize the greyscale
stereo image pairs from odometry dataset sequence 00 of
KITTI dataset. To mimic a two agent system, we split the
dataset roughly in half, leaving a small amount of overlap and
adjusting timestamps on the second half to mimic starting at
the same time as the first half. We then feed the two halves
to two ORB-SLAM2 instances.

B. EECS Building dataset

In order to incorporate April tags and test our approach in
an indoor environment, we collected a custom dataset on the
second floor of the EECS building, University of Michigan.
Figure 6 represents the design map of the aisles where we
collect our data. The sequences were collected using Intel
Realsense D435 RGB-D cameras. The sequence traverses a
loop with several location loop closures and client to client
loop closures. The dataset proves to be a challenge for visual
odometry because of the sharp 90 degree turns.

For data preparation, we performed intrinsic calibration us-
ing MATLAB Camera Calibrator and saved the corresponding
configuration files. We also synchronized the timestamps of
the depth and lidar data, both at the collection step and the
conversion step of the data. The tools for converting data
from Intel Realsense ROS bags to a TUM formatted dataset



Fig. 7. Final map of our enhanced multi-agent ORB-SLAM2 system running
with the KITTI dataset. Map points are shown in black, keyframes are shown
in blue.

are provided in our code repository. We also provide several
data sequences of the building with links published on our
webpage.

VI. RESULTS

A. KITTI Dataset

We first tested our enhanced multi-agent ORB-SLAM2 on
the KITTI dataset [7]. Figure 7 shows a wide-view portion
of the final map. Figure 8 shows a closer view of a single
corridor of the dataset. In figure 8 the loop closure points
(green) between keyframes (blue) can been seen.

Figure 9 shows a crossroads of two paths. Because the two
paths are taken by agents moving in opposite directions, there
is no ability for loop closure between the two paths. This
scenario illustrates the problem we solve through April tag
supported agent-to-agent recognition.

B. EECS Dataset

The EECS dataset includes April tagged ”robots”, enabling
testing of the robot-to-robot loop closure functionality. Figure
10 shows the successful robot-to-robot loop closure point at
the beginning of the dataset in red lines. Green lines represent
within-robot loop closures, and blue triangles represent key
frames.

Figure 11 shows a wider perspective of the two agents
meeting after a separation and again successfully loop closing
against each other. Their positioning in this figure is analogous
to the unrecognized loop closure in figure 9 - again the agents
face opposite directions, but the April tag functionality enables
recognition and therefore loop closure.

VII. CONCLUSION AND FUTURE DIRECTIONS

JORB-SLAM is a multi-agent enhancement upon ORB-
SLAM system, providing greater opportunities and robustness
for efficient and effective exploration. Additionally, JORB-
SLAM uses April tags to detect robots and provide additional
loop closure criteria. We also evaluate our approach on the
KITTI dataset and a new EECS dataset, proving the feasibility
of the multi-agent system and April tag detection.

Fig. 8. Close up of a loop closure sequence in the KITTI dataset. Map points
are shown in black, keyframes are shown in blue, covisibility and loop closure
edges are shown in green.

While the implementation described here is limited to a
software driven proof-of-concept, only minor modifications
are required for implementation in a hardware system. There
are various applications where the concept of our JORB-
SLAM can be put to great use. One of the core application
fields is in observation and monitoring systems of marine
applications. The process of navigation in open sea space
is very challenging, with fewer landmarks contributing to
higher uncertainties in the agents. The cooperative framework
approach could be effectively put to use in this situation.

On the other hand, there are still several problems that are
left unsolved in our system and future exploration can be done
on these topics.



Fig. 9. KITTI dataset crossroads point. One agent moves from the ”south”
and turns ”west”, the other moves from the ”north” and turns ”east”. The two
agents travelling in opposite directions do not recognize the other’s path and
therefore cannot use the meeting for loop closure.

Fig. 10. Loop closure point from starting positions in the EECS dataset.
Blue represents keyframes, green represents within-agent loop closure, red
represents between-agents loop closure.

Fig. 11. Between-agents loop closure point in the EECS dataset after
significant distance travelled.

1) Robot recognition: While extremely useful, as proven by
their widespread adoption, April tags are an artificial handicap
to robot recognition. A more elegant solution, a solution better
able to blend in to the natural world could use learned features
of the robotics agents in the system to recognize the agents
instead.

2) Data efficiency: The navigation for autonomous agents
in unknown and changing environments requires a map and
efficient localization technique to enable the agents to per-
ceive the surrounding data. However, each design varies
depending on the application requirement, types of sensors,
and techniques. The multi-agent collaborative ORB-SLAM
implemented here is essentially a software simulation of
multiple visually aided agents mapping the environment they
are traversing, proving that it reduces the amount of time
required to map a larger area. This idea can be further extended
to the physical level through a hardware implementation of
the multi-agent system. Such a system will require various
additional functionality and extensions for the whole system
to work for a dedicated purpose or application.

3) Decentralized system: The communication protocol sys-
tem implemented is a centralized communication protocol.
Clients communicate with each other via a centralized server,
which performs the tasks of map fusion and global optimiza-
tion, and also (ideally) updates the local mapping information
contained in the clients. However, a major constraint in
the centralized communication protocol lies in the fact that
we optimistically assume a fault-free perpetually functioning
server impervious to failure on accidents. This issue could
be mitigated through the implementation of a distributed
communication system having multiple servers, each capable
of covering up or accounting for failures in the other servers.
Additionally, an ad-hoc communication protocol could be im-
plemented amongst the clients in a GPS-denied environment.
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